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ABSTRACT 
This paper shares the design principles of one Advanced Placement 
Computer Science Principles (AP CSP) course, Beauty and Joy of 
Computing (BJC), both for schools considering curriculum, and for 
developers in this still-new field. BJC students not only learn about 
CS, but do some and analyze its social implications; we feel that the 
job of enticing students into the field isn’t complete until students 
find programming, itself, something they enjoy and know they can 
do, and its key ideas accessible. Students must feel invited to use 
their own creativity and logic, and enjoy the power of their logic 
and the beauty and elegance of the code by which they express it. 
All kids need genuine challenge and sensible support so all can have 
the joy of making—seeing themselves as creators, not just consum-
ers, and seeing that it is their own intellect, not just our instructions, 
that is the source of that making. Framework standards are woven 
into a consistent social and intellectual storyline to give the curric-
ulum integrity.  

Principles guide even our choice of programming language. Learn-
ers should focus on the logic and structure of their thinking, not on 
misplaced semicolons; attention to such syntactic detail is antithet-
ical to broadening participation. We feature recursion and higher-
order functions because they beautifully exemplify abstraction, a 
key idea in CS and the CSP framework. 

BJC also places significant emphasis on the social implications of 
computing, balancing fundamental optimism about computing 
technology with a critical view of specific uses of technology.  

KEYWORDS: CS education, Curriculum Design, Advanced 
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1 Introduction 
The National Science Foundation (NSF) and College Board (CB) in-
troduced the Advanced Placement Computer Science Principles (AP 
CSP) course to broaden participation in CS by appealing to high 
school students who didn’t see CS as an inviting option—especially 
female, black, and Latinx students who have been typically un-
derrepresented in computing. The AP CSP course was the center-
piece of an NSF-led initiative (CS10K) to train 10,000 high school 
teachers to teach CS [1, 2]. After pilots at college and high-school 
levels, CSP became an official AP course during 2016–17 with the 
first CSP exam given in May 2017 [3, 4, 5]. The CSP framework spec-
ifies six computational thinking practices and seven conceptual Big 
Ideas central to the study of computer science [6]. To support adop-
tion of CSP, the NSF and other organizations funded several projects 
to develop curriculum materials aligned to the framework and to 
provide professional development for teachers to learn about cur-
ricular options and about pedagogical practices that support equita-
ble CS instruction, and to plan for implementation and use in their 
schools [7].  

The Beauty and Joy of Computing (BJC) curriculum was designed 
as a version of AP CSP that would meet these goals with strategi-
cally more emphasis on programming than the framework requires. 
CB-endorsed, BJC has been revised over the past four school years 
as part of an NSF-funded partnership among Education Develop-
ment Center (EDC); University of California, Berkeley (UCB); the 
NYC Department of Education (NYCDOE); CSNYC (now CSforAll); 
and NCSU (North Carolina State University). BJC began as an un-
dergraduate introduction to CS for non-majors at UCB [8]. High 
school teachers who knew of it saw its appeal and potential for their 
students, and some adapted it for their own use. But to spread suc-
cessfully in high school, the college structure (e.g., hour lectures and 
unlimited lab time with TAs) and resources (e.g., lack of teacher 
guide, assessments, differentiated learning) required change.  

The NSF’s call for developing instances of such a course was an op-
portunity to revise the undergraduate BJC for wide use in high 
schools. To this end, UCB partnered with EDC, NYCDOE, NCSU, 
and CSNYC to redesign the student materials; create professional 
development, guides for teachers, and support for implementation; 
research the implementation of the materials and programs; and pe-
riodically report back to the field.  
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Given the range of options—now, a dozen curricula, varying in ap-
proach, all aligned with the framework [9] and endorsed by CB—we 
want to share with schools, in the same spirit as [10], the underlying 
design principles as schools consider these programs.  

When we originally proposed this work, we believed that most of 
our attention would be on the structural elements and supplemen-
tary resources while course-content changes would only be needed 
for compliance with the AP CSP framework [7]. We also anticipated 
cleaning up writing and style, but only in a small way. In fact, things 
turned out quite differently.  

By the time we were examining the student materials closely 
enough to fine-tune lesson by lesson, we began to see ways in which 
the epistemology did not reflect our principles, and we began to fo-
cus as much on issues of pedagogy and emphasis as on structure, 
resources, and compliance. The result is now one of the CB-
endorsed curricula for the AP CSP course and exam.  

What’s to be learned from curriculum designers? By the time 
a curriculum reaches schools, the result often hides the thought, dis-
cussion, decisions about content and pedagogy, initial crafting, tri-
als, revision, editing, and so on that went into its development, and 
the many contributors—content specialists, writers, classroom 
teachers, students, advisors, page designers, illustrators, editors, 
evaluators, and others—who tug in different directions. The process 
elements—having a vision and articulating it clearly, brainstorming, 
outlining, writing, designing format and layout, editing, field test-
ing, revising, striving for equity, teaching in the classroom, assuring 
usability by teachers, assessing student progress, meeting required 
standards,accounting for sustainability, and more—interact in com-
plex ways. A myriad of decisions must be made, all of which collec-
tively determine the final product. 

What guides the decisions? There are non-negotiables: content mat-
ter must not be factually wrong, text must be readable by the in-
tended audience, and standards/frameworks can’t be ignored. But 
otherwise, there are few absolutes. While there are certainly wrong 
ways to proceed, there are many right ways. Our aim here is to clar-
ify what kinds of decisions must be made, illustrate how we came 
to particular ones, and show how philosophy, assumptions, and 
“high-level” decisions can affect curriculum design, in some cases 
right down to matters of “low-level” page-craft. The paths from vi-
sion to page and from principle to implementation are messy. We 
doubt  that many visions survive whole by the time they’ve gone 
through the meat-grinder of what, for now, we’ll just call “practi-
calities.”  The result often imperfectly represents the principles that 
were to guide it, but examining the principles can help guide other 
development.  

All the principles we list below derive from our fundamental belief 
that curriculum inevitably teaches more than its list of contents [11, 
12, 13, 14]. Its organization and pedagogy also teach a point of view. 
For example, explanation followed by practice teaches a very differ-
ent way of thinking than experience and experimentation followed 
by formalization and consolidation. Content can be arranged to em-
phasize theory or application, or the historical development or other 
features of a discipline. Without close attention to message, a 

curriculum can make everything from small details to major ideas 
seem equally important. 

In BJC, our absolute top-level goal is broadened participation in com-
puter science. All by itself, that goal dictates several things. At a min-
imum, such a curriculum must avoid biases in culture, intellectual 
or social interest, or accessibility that exclude students even implic-
itly. It must also be computer science. It must present real but man-
ageable challenge so that students feel the fun and exhileration of 
competence and confidence that they can “do” computer science. 
That is, our way to serve the top-level goal is to entice students with 
the pleasure and sense of agency programmers feel when they use 
their own creativity and logic to make things, and to let them enjoy 
the power of their own logic and the beauty and elegance of the 
code they create to express it.  

To accomplish this, BJC emphasizes programming more than the 
AP CSP standards require. Simple code and basic CS ideas can do 
part of that but, in our experience, big ideas (e.g., recursion and 
higher order functions) and their power can be presented accessibly. 
These ideas, not just coding or its products, can fascinate students 
and catch their interest. Of course, there are many big CS ideas—
abstraction, algorithms, parallel processing, distributed processing, 
object-oriented programming, the concept (and techniques) of de-
bugging, and so on. Because it is impossible to teach them all 
equally, we had to make decisions both about what to teach and 
about how to teach.  

2 Pedagogical design principles 
To broaden participation, we must consider how we teach as well 
as what we teach: believe in students, build experience, organize 
around big ideas, let them learn by doing, provide beauty and joy.  

Design with conviction that all kids can do challenging 
things. Reaching a historically excluded audience can tempt cur-
riculum writers to assume that reduced contact renders the new 
audience less capable than those who have already joined the club 
without invitation or accommodation. That assumption is de-
structive. Yes, people who have been excluded from CS (whether 
from external bias or from their own expectations) have often 
been implicitly or explicitly excluded from advantages in other 
subjects, too, with consequent background gaps. And, yes, many 
underrepresented kids are also students whose native language is 
not English and, therefore, find heavy text a barrier. So we try to 
keep text light and limit prerequisite special knowledge, but with-
out limiting challenge or depth. One principle of our curriculum 
development is that all kids can do challenging things, and that all 
can figure out a great deal on their own. Because pace inevitably 
differs—sometimes because deep interest slows kids down to ex-
periment more or speeds them up to find the next surprise, and 
sometimes because of hurdles that change how kids work—we 
must provide approaches that are genuine challenges to all kids; 
we must also provide sensible support so all students can experi-
ence the joy of making, and the joy of seeing that it is their own 
intellect, not our instructions, that is the source of that making. 

Experience before formality. This epistemological principle 
has guided our curriculum development in mathematics and in 
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programming for decades [15, 16, 17]. Roughly, it involves giving 
students enough varied experience with a concept to let them cre-
ate the abstraction, the concept, themselves, saving technical de-
tails like vocabulary, definition, variations, and so on until 
students have built the basic concept. BJC employs this use-mod-
ify-create [18] paradigm. For example, very early in BJC, students 
load a fully-functioning project with three pieces of code:  

,      ,      . 
They click on each, using each to see what it does. The gossip block 
reports a simple sentence. Then students open the blocks up to ex-
amine their structure (fig. 1). The structure is simple and the behav-
ior they’ve seen in their experiments tells them what the code 
means. This is analogous to how children learn their native lan-
guage, from use in context. Students modify the code—initially in an 
almost trivial way—personalizing it with their own content. 

A second gossiper (fig. 2) with a different vocabulary, not yet seen 
by the students, sparks curiosity and leads to new learning but is 
still simple and clear. Some students use the pattern they see to 
make the second gossiper invoke the first again, leading to a recur-
sive back and forth. Despite having deliberately introduced a call 
back to the first gossiper, some students are surprised by the con-
tinued behavior; some anticipate only one extra step, and not a re-
curring one. Long before we formally “teach” recursion, students 
(possibly just by accident) invent it themselves, though not yet with 
a way to control it. A lot has happened in just this one early lesson. 
Students encounter lists (arrays), multiple agents each with its own 
script, some control structure and event handling. They can modify 
these purposively before receiving formal instruction. And they 
have opportunities for surprise that build curiosity. Consolidation, 
extension, and explanation—formalizing  the  knowledge—all come 

 

 

 

Figure 1: The definitions of who, does what, and gossip. 

Then they try a two-block script.  
The behavior is a surprise (fig 2).  

 

Figure 2: Two sprites gossiping with different vocabulary. 

later after students have had time to explore ideas in the context of 
remixing an established project.  

Ideally, each tool/technique is encountered in a more than one con-
text, partly to feed the diversity of student interests—language, art, 
mathematics, building games or quizzes…. Encountering the same 
tool/technique in multiple contexts also shows that it is not single-
purpose; it lets students abstract out the utility of the tool precisely 
so that they can extend it to their own purposes. For example, in 
this first stage of the gossip project, the use of lists is basic: at this 
point, a list is just a repository for content selected at random; no 
indexing, no construction of the list, no mapping over the list. But 
the idea grows to handle more complex language and to patch to-
gether parts of words. Students create a block that appends s to the 
end of a noun, then improve it so that it does a better job of making 
plurals than just adding s. (Optionally, students use the same tech-
niques to conjugate a verb in Spanish or another language of their 
choice.) The higher order function map lets them apply their plu-
ralizer to a test-list of nouns. Lists keep appearing in different 
ways—lists of coordinate pairs, lists of embedded lists, lists of run-
nable blocks—and the powerful tools that process lists, like mapping 
a function over a list, or applying a predicate to all items of a list, 
and keeping only those items that fit—appear in semantically clear, 
syntactically simple contexts.  

Students encounter recursive processes early before studying the 
structure of recursion in any formal way. They may have seen the 
back-and-forth caused by introducing broadcast to the second 
sprite. They definitely replace the second who in gossip with more 
complicated who (fig. 3) which introduces a conditional, and then 
they replace one of the first two whos inside more complicated who 
with more complicated who, try gossip a few more times, and de-
scribe the surprising result. 

 

Figure 3: Introducing a condition  
and an informal opportunity for recursion 

Preserve all required details, but organize around big ideas.  

Curriculum teaches more than content. When a constraint (e.g., a 
framework requirement) requires what feels like a loose factoid or 
a distraction from our goals (e.g., broader participation, personal 
power, important and beautiful ideas) we must find a way to meet 
the constraint in an intellectually or socially worthy context. Ignor-
ing frameworks is no option; a curriculum that schools can’t accept 
is ineffective; but weaving each standard into a consistent social or 
intellectual storyline gives a curriculum integrity. 
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The same principle guides the choice of programming language. If 
students are to experience the power and intellectual beauty of pro-
gramming, then logic, not syntactic detail, must be the focus. In 
many text-based languages, a program can be completely logical in 
structure but fail to work because of a misplaced semicolon. Though 
professionals may have to develop skill at searching for syntax er-
rors, we believe that is not where any beginners’ attention should 
be, and is especially antithetical to broadening participation. Choos-
ing Snap! as our language for instruction and work focuses students’ 
coding and debugging time on the logic and strategies of program-
ming, not syntax. Snap! is essentially Scheme [19] disguised as 
Scratch [20]. On the one hand, it is a sophisticated programming 
language with advanced logic and power—recursion, higher-order 
functions, complex data structures (including lists that can contain 
numbers, words, other lists, and even blocks of code), object- ori-
ented programming, and lambda—and has been applied even in 
commercial settings. On the other hand, its visual, blocks-based in-
terface nearly eliminates syntactic fussiness; its visual metaphors 
make powerful ideas accessible even to beginners. And research 
supports such a choice: students in blocks-based classes outperform 
students in otherwise comparable text-based classes and express 
greater interest in future computing courses [21, 22]. 

Learning by doing. To a first approximation, CS is a body of 
knowledge and ways of thinking that help people create hardware 
and algorithms for solving problems like programming a machine 
to sort mountains of data or understand natural language or learn 
from “experience.” CS also builds languages that let people program 
to create things, tools for productivity, health, games, science, art…. 
Programing is inherently creative, and learning to program is, by 
nature, hands on. That experience of making things, therefore, 
should be a big part of our students’ experience.  

Designing learning around projects doesn’t mean that the objective 
is the project. If that were the goal, Lego-like instructions, explicit 
steps to get a lovely result, would suffice. Instead, we want students 
to learn how to do their own projects—ones we have not thought 
of—to experience “I can create,” “I can solve problems,” “I can pro-
gram.” That means they need to learn tools and techniques that let 
them improvise. To us, project-based means learning important 
tools and techniques not by doing exercises on them but by building 
things that need them. That helps us define “important techniques”: 
ones that are re-usable. Some things we think are extremely cool 
can’t be taught because they can’t be re-used within the limited time 
we have. Showing many wonderful things, but giving students no 
time to assimilate and own them seems fruitless to us. 

Students see that their own work can always be extended and im-
proved. Some projects appear in stages. You can do this part now, 
with what you know. Later, when you know more, you can add to 
it. A more general message is that work is never “done, but bad”; 
work that is not yet as one likes is simply not yet done. And there’s 
no perfect state; things can always be revised. 

Project orientation does not mean there are never etudes along the 
way. Though we may generally strive for introducing new tech-
niques or tools in the context of needing them for some purpose we 
are already engaged in, sometimes learning the new ideas needs to 

be uncluttered with the camouflage of context and other techniques 
or tools. In those cases, we try to present puzzles for kids to solve 
using the new tool. This one, inspired by Vaniček [23], teaches pred-
icates by giving students code and a result to try to understand (fig 
4), and then new designs to try to make by using and modifying 
other predicates (fig 5). 

BJC uses the same strategy to introduce the higher order function 
keep, as students comb through a massive dictionary to create 
a list of words that match clues for a word puzzle.  

 
Puzzles need not be artificially crafted. They can be part of a project, 
but abstracted from the whole so that the focus is on the new ele-
ment. Ultimately, to teach students how to think on their own, the 
projects we present are incomplete, going only as far as the raw 
functionality of the new elements we are teaching so that students 
get the sense of what’s possible and the power they have to create 
it, but leaving room for them to add their own features creatively. 
We assure that they have all the essential tools (blocks), give them 
some example, and then let them go. 

Beauty and joy: helping students recognize, respect, grow, 
and enjoy their own logic and creativity in CS. The esthetic of 
programming is not just in its products; programs, themselves, can 
have intellectual beauty. The classic text, Structure and Interpreta-
tion of Computer Programs [24] says it this way: 

“To appreciate programming as an intellectual activity 
in its own right […] you must read and write computer 
programs—many of them. It doesn’t matter much what 
the programs are about…. What does matter is how well 
they perform and how smoothly they fit with other pro-
grams in the creation of still greater programs. The pro-
grammer must seek both perfection of part and 
adequacy of collection.” (Emphasis ours.) 

The CSP framework emphasizes creativity. To serve this goal and 
build a sense of competence to pursue CS, our students experience 
“doing CS” through more programming than the CB requires. To 
help them feel “CS-smart,” students need to see their code not just 
as a means to an end with an effect they like but as “poetry,” code 
with structure, elegance and power. Programs represent students’ 
thinking, so the code, itself, should feel beautiful to students.  

Achieving and appreciating beautiful code isn’t about being clever. 
Cleverness is a local phenomenon that appears differently in each 
student. Our goal is to help students express the beauty in their in-
sights, without having to worry about computerish details. We 
want to let programming help them refine and add precision both 
to their insights and to their expression. For example, there are 
many ways to define a function that takes a list of numbers as input 
and returns a list containing the squares of those numbers.  

Figure 6 shows three methods for a squares of 
block. Two closely mimic how students often de-
scribe their thinking; the third uses a style that 
few students articulate 
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spontaneously. While attracting students to the field, we don’t push 
particular techniques—students will, in time, develop their own 
style and esthetic—but to develop a personal style, or even to notice 
that there can be a poetry in programming, they need at least some 
exposure to varied approaches to a single problem.  

      

Figure 4: A script and its result.  

       

Figure 5: A design and some predicates that might help. 

 

 

 

Figure 6: Iterative, recursive, and higher-order function 
approaches to processing a list. 

Design for diversity by offering diversity and personaliza-
tion. A curriculum cannot be completely bias-free. The tone, con-
texts, even the content one chooses to highlight, all evince a point 
of view that is not universal. Some curricula attempt inclusivity by 
using culture-stereotypical names, contexts or activities—pop-social 
images of “boy” and “girl” or “white” and “black” culture, or culture-
associated names. We think this is not a good way to be inclusive, 
reduce bias, or broaden appeal. While such techniques explicitly sig-
nal acknowledgment of diverse groups and sensibilities, they do so 
by invoking stereotypes: this project is here for girls; this name (os-
tentatiously) reflects your ethnicity. 

So? Avoid imagery, style, or content that implicitly targets a group 
pro or con. But there are also more subtle biases. We recall Barbara 
Janson [25] describing her visit with a teacher group who knew that 
the math text they had was rote, non-thinking junk, but saw no help 
from the new materials they were shown because of the materials’ 
strong (liberal) cultural bias: boys doing dishes, “rain forest math,” 
and so on. Though this bias probably wasn’t accidental (surely it 
reflected a conscious concern of the university R&D teams that built 
the curricula), its consequences included one that the developers 
surely didn’t intend: It left some groups unserved. But even a naïve 
accident can create bias. “Mary went to the clothing store with $200 
and wanted to….” And of course cultural/political neutrality is also 
a bias—a choice not to take certain stands, resulting in a bias toward 
the status quo. 

We take the deliberately non-neutral stand of aiming to attract and 
serve the most underrepresented groups in CS. We actively recruit 
to get kids in, then let word of mouth draw in more. The BJC prin-
ciple (not fully realized) is to appeal to a breadth of personal, social 
and intellectual interests that cross race, gender, and economic lines 
(mathematics, language, games, art, science…) and leave room for 
students to put their own stamp on their work.  

3  Content principles: Programming 
Helping students see that they can “do” CS and enjoy it is one part 
of our strategy. We also invite students beyond the entry points, 
experiencing recursion and higher-order functions because of the 
powerful and beautiful way they exemplify abstraction, a key idea 
in CS and in the AP CSP framework. Such “advanced topics” are 
often seen by others as too difficult for students, but Snap!’s explicit 
visual representations make them more accessible. Seeing the com-
plexity of a fractal tree (or being taken by surprise by an astonish-
ingly long gossip) and seeing the simplicity of the recursive 
procedure that produces it is an “aha!” that you don’t get from a 
Google search, a video, making a poster in Photoshop, or even writ-
ing programs with no control structure more powerful than a loop. 
We’ve mentioned some of these “extra content” choices before, so 
this section will be light, but we want to clarify why we think these 
matter even in an introductory CS experience. 

The power of recursion. One important face of ab-
straction occurs when you notice that in some prob-
lems, parts mirror the same steps as the whole. For 
example, in this design, seen very early in BJC with-
out complex trappings, whatever process draws the 
red triangle and its blue children could conceivably let blue triangles 
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draw green children. After multiple early experiences that clarify 
the idea, we teach recursion formally late in the course, analyzing 
what enables it (the recursive call) and what stops it (base case) us-
ing both graphical (e.g., fractal trees) and list or number processing 
(with memoization, if needed). Modeling the reasoning with a re-
cursive program helps develop such thinking.  

Function as data. Another important face of abstraction occurs 
when methods become objects. In mathematics, one engine for pro-
gress is that the methods of one generation become the objects of 
study for the next. Like Scheme, Snap! implements “first class func-
tions.” Students first see functions as inputs with semantically clear 
examples. Using map to test plural is one; here is another. 

 
When students study recursion formally, they learn to build map.  

 
The new idea here is that one of the inputs is a reporter (a function), 
and its treated just like any other piece of data. 

Mathematics as a tool. CSP is not a mathematics course, but 
mathematical thinking is a valuable tool in programming. Basic al-
gebra can help make algorithms more efficient. 

For example, in compounding interest, the double recursion algo-
rithm  

balance  ß  balance  +  rate • balance 

is inefficient. Elementary factoring increases efficiency. Similarly, 
the use of coordinates and mod are often needed when working 
with time or screen graphics. The perceived difficulty of some of 
these ideas, we think, is partly an artifact of the languages and met-
aphors chosen and the contexts in which they are encountered. 

4 Content principles: Social implications  
A major element of BJC and of the AP CSP framework focuses on 
the social implications of computing. To build students’ sense of 
agency, we balance a fundamental optimism about the future of 
computer technology with a critical stance toward each specific use, 
focusing not just on the facts of the social implications, but also on 
establishing particular perspectives, which include:  

Social implications differ for different groups of people. To 
talk broadly of technology’s “benefits and harms” papers over the 
question of who benefits, who is harmed. We encourage students to 
read critically, to ask themselves who wrote a text, and who benefits 
if the text persuades them to a particular point of view. 

Everyone can participate in developing technology policy. 
Even apart from being the programmers, students learn that they 
can control the development of new technologies simply by being 
aware voters and consumers. BJC students read, discuss, and write 
about issues of computing in society using the Blown to Bits book 
[26] and regularly engage in “Computing in the News” activities, in 
which students present a recent article about technology, and the 
class asks clarifying questions and discusses implications. 

Teaching social implications is not “teaching ethics.”  Much of 
the teaching about social topics, especially in K–12 but even at the 
university level, takes the form of shalt-nots: Don’t download illegal 
copies of movies and music. Don’t cyberbully. We prefer to respect 
students as thoughtful social agents and to inform them about the 
implications of technology for different stakeholders rather than to 
lay down rules. 

For example, students work in groups to try to develop a way for 
authors to make a living from their work while still allowing the 
unlimited downloading rights that many students want, and while 
respecting the original public interest purpose of copyright. They 
also consider how making movies, with a cast and crew of thou-
sands, needs a different financial model from making music, which 
may be created by a single person. 

5 Conclusion 
Given the growth in interest in introducing and engaging K–12 stu-
dents in computer science, particularly among high school students, 
many teams have designed materials to serve this goal, resulting in 
diverse curricular options for teachers and schools to learn about 
and choose among, all aligned with the new AP CSP framework and 
endorsed by the College Board, but they vary in content and ap-
proach, and critically, in the guiding principles that undergird their 
design. We share the guiding principles underlying one of these 
AP CSP endorsed curricula to illuminate the rationale and craft be-
hind it, and to spark reflection and discussion about critical princi-
ples for AP CSP curricula. We encourage all those considering AP 
CSP curricula to investigate the guiding principles of the different 
curricular options, and to share these principles with teachers at PD 
to inform teacher implementation. We also share positive results. 
To date, 800 teachers have participated in BJC professional develop-
ment, with over 150 teachers trained in NYC. In addition, over 4400 
BJC students nationally sat for the 2018 AP CSP exam. BJC4NYC 
findings from ’16–17 and ’17–18 show that diversity increased, 
teachers made statistically significant pre/post gains in content 
knowledge, self-efficacy, self-rated programming ability, prepara-
tion/effectiveness, and knowledge/fluency, and students showed 
significant pre/post gains on a content assessment, with small to 
medium effect sizes [27, 28, 29]. Students’ 2017 AP CSP passing rates 
also show encouraging results [30].  
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